Surface EMG-based human-machine interface that can minimise the influence of muscle fatigue
نویسندگان
چکیده
It is clear that the surface electromyographic-based (sEMG) human-machine interface (HMI) shows a reduction in stability when the muscle fatigue occurs. This paper presents an improved incremental training algorithm that is based on online support vector machine (SVM). The continuous wavelet transform is used to study the changes of sEMG when muscle fatigue occurs, and then the improved online SVM is applied for sEMG classification. The parameters of the SVM model are adjusted for adaptation based on the changes of sEMG signals, and the training data is conditionally selected and forgotten. Experiment results show that the presented method can perform accurate modelling and the training speed is increased. Furthermore, this method effectively overcomes the influence of muscle fatigue during a long-term operation of the sEMG-based HMI.
منابع مشابه
EMG-based Fatigue Assessment During Endurance Testing With Different VT Protocols
BACKGROUND: Muscle fatigue can be defined as the failure of a muscle to maintain a reasonably expected force output. The multivariate approach to fatigue assessment is used because the multiple (EMG) feature provides more information than anyone. OBJECTIVE: This study presents a method of assessing muscle fatigue during endurance testing at 50% maximal voluntary contraction (MVC) using electro...
متن کاملQuantitative Assessment of Muscle Fatigue for FES Research Studies
Background: Muscle fatigue is an important issue in neuromuscular rehabilitation. Better control of this phenomenon would result in better prevention of its consequent physiological damages.Objective: To provide a mathematical representation of muscle fatigue as a function of time.Methods: We conducted this study by combining the EMG-based estimation methods of muscle activation with the availa...
متن کاملAn Android Application for Estimating Muscle Onset Latency using Surface EMG Signal
Background: Electromyography (EMG) signal processing and Muscle Onset Latency (MOL) are widely used in rehabilitation sciences and nerve conduction studies. The majority of existing software packages provided for estimating MOL via analyzing EMG signal are computerized, desktop based and not portable; therefore, experiments and signal analyzes using them should be completed locally. Moreover, a...
متن کاملQuantative Evaluation of the Efficiency of Facial Bio-potential Signals Based on Forehead Three-Channel Electrode Placement For Facial Gesture Recognition Applicable in a Human-Machine Interface
Introduction: Today, facial bio-potential signals are employed in many human-machine interface applications for enhancing and empowering the rehabilitation process. The main point to achieve that goal is to record appropriate bioelectric signals from the human face by placing and configuring electrodes over it in the right way. In this paper, heuristic geometrical position and configuration of ...
متن کاملDetecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks
Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJMIC
دوره 22 شماره
صفحات -
تاریخ انتشار 2014